Research report

Specificity of the failure to inhibit responses in overweight children

Chantal Nederkoorn, Jennifer S. Coelho, Ramona Guerrieri, Katrijn Houben, Anita Jansen

Abstract

Poor response inhibition has been associated with obesity, excessive food intake, and other consumptive behaviours, including alcohol use. However, the correlation between obesity and addictive behaviours like alcoholism is low: people who are obese appear to have a specific problem in restraining food intake. This would imply that obese people have more difficulties in inhibiting responses towards food, compared to other rewarding stimuli. In the present study 89 children (ages 7–9) were tested with the stop signal task, in which responses towards food pictures or toy pictures had to be inhibited. Results showed that children were less effective in inhibiting responses towards food and percentage overweight predicted a lower ability to inhibit responses in general. When dichotomizing the sample in overweight and lean children, it appeared that overweight children were specifically less effective in inhibition towards food cues, compared to lean children. In conclusion: The results confirm weight related inhibitory problems and might explain the increased overeating to food cues in overweight children, as reported in the literature.

Introduction

In Western societies, palatable calorically dense food is omnipresent and relatively cheap compared to healthier foods (Drewnowski & Darmon, 2005). Whereas people used to struggle to obtain enough calories and nutrients, currently a substantial part of the population is struggling to restrict their intake, specifically of energy dense foods. In combating appetite, people need to make an appeal to their self-control (Lowe, 2003). This makes people with less effective self-control vulnerable for overeating and unhealthy weight gain. Research indeed shows that obese people have less effective inhibitory control, compared to those who are lean (Nederkoorn, Havermans, Roefs, Smulders, & Jansen, 2006). Moreover, inhibitory control predicts increased food intake: people with less effective response inhibition eat more during a taste test with palatable, energy dense foods than do people with effective response inhibition (Guerrieri et al., 2007). Not only in adults, but also overweight/obese children and adolescents score lower on tasks measuring inhibitory control and executive functioning (Batterink, Yokum, & Stice, 2010; Cserjesi, Luminet, Molnár, & Lénárd, 2007; Nederkoorn, Braet, Van Eijjs, Tanghe, & Jansen, 2006; Verberken, Braet, Claes, Nederkoorn, & Oosterlaan, 2009; Verdejo-Garcia et al., 2010). Self-regulatory skills in toddlers 2 years of age predicted overweight and obesity at 5.5 years of age (Graziano, Calkins, & Keane, 2010).

It seems conceivable that the same lack of inhibitory control would make children vulnerable to other appetitive, rewarding behaviour. Indeed, response inhibition predicts a variety of consumptive behaviours in children and adolescents, including alcohol and tobacco use (Nigg et al., 2006; Riggs, Spruijt-Metz, Chou, & Pentz, 2011). Strangely, the correlation between obesity and other addictive behaviours is often low (Riggs et al., 2011), absent or even negative (Kleiner et al., 2004; Mather, Cox, Enns, & Sareen, 2008). Although ineffective inhibitory control underlies different types of excessive consumption, people who are obese specifically fail in resisting responses towards food and not so much towards other stimuli. Possibly, they acquired conditioned responses to food cues, which are in turn associated with increased food intake. When people are confronted with stimuli that predict food intake, they show cephalic phase responses, including increases in salivation and gastric activity (Nederkoorn, Smulders, & Jansen, 2000; Power & Schulkin, 2008). These responses allow for larger subsequent intake (Mattes, 1997).

Although individuals who are within the normal-weight range exhibit such conditioned food responses (e.g., Cornell, Rodin, & Weingarten, 1989), it appears that obesity in particular is associated with increased appetitive responding to food cues. For example, individuals who are obese show increased salivary response and craving after exposure to food cues, compared to those who are lean (Ferriday & Brunstrom, 2011; Wooley, Wooley, & Woods, 1975). Similarly, children who are obese tend to eat somewhat more after exposure to food cues than do those who are of healthy weight (Jansen et al., 2003). The increased responsivity of those
who are obese also extends to attention to food-related cues, with children who are obese demonstrating more alertness to food ad
verts than the lean children (Halford, Gillespie, Brown, Pontin, & Dovey, 2004), and adults who are obese showing increased atten
tion for food cues relative to lean participants (Castellanos et al.,
2009; Werthmann et al., 2011).

An analogous responsiveness is found in drug users when ex
posed to relevant drug cues (Carter & Tiffany, 1999; Goldstein &
Volkow, 2002). Goldstein and Volkow (2002) suggest in their mod
el that craving or anticipation of substance use leads to a ‘state’ of
decreased inhibitory control. Thus, exposure to relevant cues might
not only induce cephalic phase responses, but also lessen inhibi
tory control. It seems therefore plausible that people who are ob-
ese are worse at inhibiting responses towards palatable food
cues, compared to non-food cues. To our knowledge, this has not
been tested yet; it has only been shown that people who are obese
have less capacity to inhibit responses towards neutral stimuli
than do individuals who are lean. The responsivity to food-related
cues appears to follow the same pattern in both adults and chil
dren. The current study focused on children because overweight
children have an increased risk of being obese as adults (Dietz,
1995), suggesting that the development of early interventions,
and increased insight into children’s food-related cue reactivity,
are a priority for public health. Inhibition towards food and toy pic
tures, both with positive valence, was tested. It was hypothesized
that a higher BMI would be related to less inhibitory control, espe-
cially towards food. In addition, it was expected that the effects
would be more pronounced when dividing the children in clini
cally relevant weight groups.

Methods

Participants

Children were recruited from two elementary schools. All par
ents of children in grades 4 and 5 were sent an information letter,
and children who returned a consent form signed by a parent were
asked to participate. A total of 91 children were tested, aged 7–9.
Two children were excluded because of technical problems. Data
were checked for outliers, but all dependent measures were within
3 SD from the mean.

Percentage overweight was calculated by dividing BMI (mea
sured at the end of the experiment) by the national norm BMI
(Van Winckel & van Mil, 2001), adjusted for gender and age, × 100.
Fourteen children (11 girls, 3 boys) were classified as overweight
(i.e., they were more than 120% overweight); the remaining 75
children (37 boys, 38 girls) were classified as lean. Descriptives
are presented in Table 1. The percentage of children who were
overweight in the present sample (15.7%) is normal in the Nether
lands, in which around 16% of children are overweight (van den
Hurk, van Dommelen, van Buuren, Verkerk, & HiraSing, 2007).

Measures

Response inhibition was measured by an adapted version of the
Stop signal task (Logan & Cowan, 1984). This task involves a go and
stop task. The go task was a choice reaction time task in which par
ticipants had to decide as quickly as possible whether a picture was
on the left or right side of the computer screen, by pressing a corre
sponding button. In 25% of the trials (the stop trials) an auditory
stop signal (1000 Hz, 100 ms) was presented, indicating that partic
pants had to inhibit their response. Initially, the stop signal delay
was set at 250 ms after the presentation of the go signal and then
adjusted dynamically depending on participants’ responses.

The two variables measured in this task are the reaction time
(RT) and the stop delay. To calculate the stop signal reaction time
(SSRT) the following procedure was used (Scheres et al., 2003):
First, all reaction times on the go trials of a participant were rank
ordered, from fastest to slowest; second, the nth percentage reac
tion time was picked, n being defined by the probability of
responding given a stop signal; finally, the average stop signal
interval was subtracted from this reaction time to estimate SSRT.
Higher SSRTs reflect less effective response inhibition.

Two adjustments were made. First, 10 pictures of highly palat
able food (e.g., candy, chocolate) were used in the food condition
whereas the toy condition consisted of 10 pictures of attractive
(toys, e.g., pencils, wrapped presents). Neutral pictures were used
in the practice sessions. The food and toy pictures were carefully
matched on colour and shape, to make them equally visually
attractive (see Fig. 1). Furthermore, children could earn points dur
ing the tasks. In the food condition, children could earn “candy
points”, which they could exchange for real candy afterwards. In
the toy condition, children could earn “toy points” which could
be exchanged for small presents, like a pencil. With every correct
and fast response (faster than their own mean response during
the practice trials + 100 ms), 1 point could be earned. During the
stop trials, failure to inhibit responses cost 2 points. Children al
ways started with 10 points. The food and toy condition both con
sisted of 64 trials, in counterbalanced order.

Hunger was measured on a 10 cm VAS scale, ranging from not
at all to very hungry. Children were explained individually what
a score meant and shown two examples of scoring when feeling
very hungry and feeling not at all hungry.

Procedure

Children were tested individually. First, hunger was measured.
Next, the stop task was performed. Finally, weight and height were
measured (without shoes) and children received a small present
(they were allowed to choose two small toys, like a pencil or
gum and two small sweets. They were told they earned this gift
during the task, but in fact every child received the same rewards).
We certify that all applicable institutional and governmental regu
lations concerning the ethical use of human volunteers were fol
lowed during this research. Approval of the Ethical Committee of
the Faculty of Psychology and Neuroscience, Maastricht University
was obtained.

Analyses

In the first ANOVA for repeated measures, condition (food vs.
toy) was entered as a within-subjects variable, gender was entered

| Table 1 |
|-----------------|-----------------|-----------------|
Lean children	Overweight children	
BMI	16.1 (1.5)	21.1 (2.7)
% Overweight	100.6 (8.8)	132.9 (16.7)
Age	8.1 (0.8)	8.1 (0.8)
Gender	37 boys, 38 girls	3 boys, 11 girls
Hunger	4.4 (2.7)	4.2 (2.4)

\(t(87) > 6.9, p < 0.001 \)
\(t(87) = 7.1, p < 0.001 \)
\(t(87) > 0.2, p = 0.83 \)
\(\text{Pearson Chi-Square} = 3.7, p = 0.054 \)
\(t(87) < 0.2, p = 0.84 \)
as between-subjects variable and percentage overweight and hunger as covariates. In the model, the interaction between condition and percentage overweight was analysed. Inhibitory control, as measured by SSRT, was the dependent variable. In the second ANOVA for repeated measures, overweight was not entered as continuous variable, but group (overweight vs. lean) was entered as a between subject variable. The other variables were equal to the first ANOVA.

Results

When overweight was entered as a continuous measure, there appeared no influence of hunger or gender on overall inhibition, as measured with SSRT (hunger: \(F(1,85) = 0.89, p = 0.35, \eta^2 = 0.01 \); gender: \(F(1,85) = 1.1, p = 0.3, \eta^2 = 0.01 \)). Overweight had a significant effect on overall inhibition (\(F(1,85) = 4.3, p = 0.041, \eta^2 = 0.05 \)): children with a higher percentage of overweight performed less well on the stop signal task. When looking at the difference between the food and toy condition, it appeared that overall, children were more effective in response inhibition in the toy condition than in the food condition (\(F(1,85) = 11.0, p < 0.01, \eta^2 = 0.12 \); mean SSRT 241.7 vs. 276.0, 95% CI of the difference between toy and food condition = 13.7–55.0 ms). The interaction between overweight and condition appeared not significant (\(F(1,85) = 0.08, p = 0.79, \eta^2 = 0.001 \)).

When the same analyses was repeated, with children classified as overweight or lean, again no effects of hunger or gender were found (hunger: \(F(1,85) = 0.79, p = 0.38, \eta^2 = 0.01 \); gender: \(F(1,85) = 1.7, p = 0.2, \eta^2 = 0.02 \)). Overweight children appeared marginally significantly less effective in response inhibition compared to those who were lean (\(F(1,85) = 3.9, p = 0.051, \eta^2 = 0.044 \); mean SSRT = 301.1 vs. 251.3, 95% CI of the difference between overweight and lean = –0.2 to 99.7 ms). Again, children were more effective in response inhibition in the toy condition than in the food condition (\(F(1,85) = 14.1, p < 0.001, \eta^2 = 0.14 \)); however, both main effects were qualified by an interaction between condition and group (\(F(1,85) = 3.9, p = 0.049, \eta^2 = 0.05 \)). Children who were overweight were particularly ineffective at inhibiting their responses towards food stimuli (see Fig. 2). Follow-up tests demonstrated significant group differences in the food condition, with children who were overweight less able to inhibit their responses towards food pictures than those who were lean (\(F(1,85) = 6.2, p = 0.015, \eta^2 = 0.07 \); mean SSRT 342.2 vs. 264.2, 95% CI of the difference between overweight and lean = 8.2–130.7 ms). No group differences emerged in the toy condition (\(F(1,85) = 0.68, p = 0.41, \eta^2 = 0.01 \); mean SSRT 259.8 vs. 238.4, 95% CI of the difference between overweight and lean = –34.3 to 66.9 ms).

Discussion

It was hypothesized that overweight in children would be related to inhibitory control. In addition, it was hypothesized that children with more overweight would have more difficulties in inhibiting responses towards food stimuli then towards toy stimuli. As expected, we found that in our sample of 7–9 year old children, overweight was related to overall more difficulties with response inhibition. This is in line with previous findings (e.g., Nederkoorn, Braet et al., 2006; Verbeken et al., 2009). The capacity to inhibit responses towards food or toy stimuli did not interact with percentage overweight over the whole group. However, when
dividing the group in an overweight and lean group, making more clinical relevant groups, it appeared that the overweight children were less able to inhibit their responses towards food stimuli than were lean children. This supports the specificity of inhibition problems associated with being overweight and is in line with Goldstein and Volkow (2002), who hypothesized that exposure to relevant cues would decrease inhibition, making people more vulnerable for responding to temptations. The cognitive-processing model of Tiffany (Tiffany & Conklin, 2000) states that craving requires mental effort, and therefore may interfere with cognitively-demanding tasks. The food pictures might have induced craving particularly in the overweight sample, and therefore diminished subsequent task performance. Unfortunately, craving was not measured in the current study, making it impossible to test if craving acted as a mediator of the effect. In the literature, some studies confirm that exposure to food cues reduces executive functioning (e.g., visuospatial working memory; Tigge mann, Kemps, & Parnell, 2010), whereas others found no effect on response inhibition (Nederkoorn, Van Eijs, & Jansen, 2004). However, these studies measured processing of neutral stimuli, in the presence of food exposure. In the present study, it was shown that specifically inhibition towards food stimuli was less effective in children who were overweight, compared to the lean sample.

This failure in response inhibition after exposure to food pictures might offer perspectives for training or treatment. Recent studies found that specific training of inhibition to food cues could help reduce consumption of high-caloric food (Houben, 2011; Houben & Jansen, 2011). In these studies, participants learned to inhibit responses towards a specific stimulus (e.g., chocolate) and to respond towards different stimuli (e.g., empty plates). For instance, they always had to press (go) when a picture on the computer screen is in landscape and inhibit their response (no-go) when the picture is in portrait view. The orientation of the picture is therefore the relevant feature, while the content is irrelevant. However, by manipulating the content of the pictures, the participant could learn to inhibit responses towards specific stimuli, without explicit awareness. Results showed that the manipulation effectively decreased preference and intake of the high-caloric food. Although long-term benefits still need to be established, this type of training appears promising.

Besides bolstering resistance to temptations in the environment, the environment could be adjusted to decrease temptation. Commercials and advertisements for palatable food effectively increased intake (Halford et al., 2004) and overweight children might be especially responsive to these cues. Restriction or regulation of advertisements and commercials of high-caloric foods, especially aimed at children, seems therefore advisable. Some jurisdictions have already implemented regulation to this effect, with promising results. For example, in Quebec, marketing for food or toys aimed at children under age 13 has been regulated for over 30 years, with recent reports suggesting that this ban decreased the tendency to buy fast food by 13 percent (Dhar & Baylis, 2011). The laws of many jurisdictions have focused on any advertisements targeted at children (that is, not just food-related advertisements, but any advertising targeted at young children in general). However, the results of the current study suggest that food-related advertisements may be particularly deleterious to the obesity epidemic, given that children who are already overweight may be differentially susceptible to these advertisements (but not to attractive items in general, like toys).

The failure to replicate reduced general inhibition in children who were overweight might be due to a lack of power, due to the small sample size in the present study. However, this would suggest that the effect size for general inhibition, if it exists, is smaller than the effect size of inhibition towards food stimuli. Alternatively, it is possible that overweight children do differ from lean children in inhibition towards neutral stimuli, but not towards (non-food-related) positive stimuli, like the toy stimuli used in the present study. In addition, in the present study children could earn points. Possibly, the overweight children were motivated more by this reward compared to the lean children, resulting in a smaller difference between the two groups. The small sample of children who were overweight also diminishes the external validity. A replication with a larger sample size, especially of children who are overweight, is therefore warranted.

In conclusion, the present study shows that children who are overweight are less effective in inhibiting their responses towards food cues than are children who are within the normal-weight range. No general problem in inhibitory control was found. These findings might explain the responsiveness of overweight children to food cues.

References

